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Catalytic oxygenation of alkenes, arenes, and alkanes is widely R,
utilized by living systems. Cytochrome P450 oxygeradsas Oy NH PRIYO
inspired many studies involving porphytiand salehcomplexes First Generation o S NH,  Re

as catalysts for catalytic oxygen transfer. The exploration of non-
porphyrin systenfshas also led to the development of interesting
model catalysts (e.g., dimeric iron complexebleomycirf). CI cl
Herein we report that diamide complexes of manganese are . ™ o
efficient catalysts for oxygenation of<€C and G-H bonds. We NHHN /(- R-o NH HN
have selected diamide systems of general ddsagligands due o NH; HN 5
to their significant modular character, accessible through efficient 3
amide assembly (Chart 1frurthermore, Collin8and O'Halloraf
characterized Mn(\Voxo tetraamide cyclic complexes and &y
acyclic Mn(V)—oxo diamide-dialkoxides, respectively, as stable ] o M
compounds. Second Generation

We have developed a stepwise evolutionary process combining R,
design and parallel screening of solid-bound manganese com- m
plexes (Chart 1)° The search was divided into several cycles
(generations) of variation setsin cases of focused systems of
limited structural diversity, and limited screening capacity, the
designer’s judgment must be exercised as to which species possess
the potential for further improvement (evolutionary potential). 0O NHHNTS 6NHHN5

These arenot necessarily the best performing specedsthe HO NH, HoN

particular cycle, but can typically be identified among above- 5 HOo

average-performing catalysts with thgossibility for further

synthetically accessible structuraériations. 96% yield
The entire protocol, including ligand assembly and deprotection,

complex preparation, and catalyst evaluation, was performed on

Third Generation
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Figure 1. (A) ORTEP representation of compléX. (B) Proposed coordination mode of complek (C) Proposed coordination mode b5.

Table 1. Epoxidation Kinetics with Selected Complexes in
Solution

Ph 3+ Ph Ph
1 2 2a

PhIO
entry catalyst 2min 10 min 30 min 2h 4h
1 62 9% 47% 69% 82%  98%
2 72 6% 14%  22%
3 8° 5% 12%  20%
4 gbe 91% 92% 92% 91%  92%
5 gbd 96% 96% 96% 97%  96%

#0.05 M 11 in CHsCN, 5 mol % of catalyst, 2 equiv of PhlO.
b CH;CN—H,0 (4:1).¢ Complex14. ¢ Complex15. Percent yield was
determined by GC. Aldehyd2a <2% in all entries.

Table 2. C—H Oxidation Kinetics with Selected Complexes in

Solution
Ph Mn3* Ph Ph
Phi
1 © 12 © 13 OH

entry catalyst 10 min 30 min 2h 4h
1 62 5% 15% 52% 60%
2 7 0% 1% 1%
3 8 0% 0% 1%
4 gbe 8% 12% 12% 12%
5 gpd 16% 17% 18% 17%

?0.05 M 11 in CHsCN, 10 mol % of catalyst, 2 equiv of PhlO.
b CH;CN—H_0 (4:1).¢ Complex14. ¢ Complex15. Percent yield was
determined by GC. Alcohdl3 <2% in all entries.

trends. Aromatic diamidd, founded on 4,5-dichloro-1,2-diami-

nobenzene, showed high conversion of the substrate and therefor

served as the template for the second generation ofltyp&he
second round identified syste which led to nearly complete

consumption of vinylbiphenyl in 12 h (96% vyield). Thus, further
improvements could be accomplished only in turnover rate and

selectivity. The bis-aspartate constrBatemonstrated good yield

(75% vyield of epoxide2, Chart 1) and was judged a promising
candidate for the next round of variations, which proved to be a

fruitful direction.

The third generation cycle stemming from different arrange-

ments of the carboxyl residues provided cyclic sys&mhich

exhibited the highest turnover rate of the entire enterprise. The
kinetics of product formation catalyzed by selected complexes

ketonel2 and alcohotl3 as products. In the €H bond oxygen
transfer, the Mn(lll) complex 09 also demonstrated the highest
turnover rate (approximately 10 min), whereupon the catalytic
activity vanished (16% yield of ketone with and 5% yield of
ketone with6, Table 2). In contrast, the complex 6fed to 60%
yield of methylbiphenyl ketoné&2 after 4 h.

From these results, the decisive role of the properly positioned
carboxyl unit on the rate of oxygen transfer became evident (
vs 5, 7, and8). However, we demonstrated that the manganese
complex of 9 and other amino-group-containing complexes
undergo degradation of the ligand itself, thus explaining the
brevity of their catalytic existencé.In contrast, ligand proved
more resistant to oxidative degradation as less than 5% of the
ligand was degraded by the addition of PhlO to the comfi@x
in the absence of the substrate.

The structure of Mn(lll}-6 has not been rigorously estab-
lished!® To do so we obtained an X-ray crystal structudr@
(Figure 1A). As postulated at the onset of our studyorms a
monomeric octahedral complex with the deprotonated amide
nitrogens coordinated to manganese. To the best of our knowl-
edge, manganese complexes ®fare without precedent. We
propose the coordination mode (methfjand bond connectivity)
of complexesl4 and15 shown in Figure 1 based on IR and MS
studies 14, absence ofy—y 3250 cn1?l, ES-MS 415 (M— H);

15, vn—n 3340 cn1?, ES-MS 416 (M— AcOH)). Interestingly,
complexesl4 and 15 exhibit similar catalytic profile (Tables 1
and 2).

The fundamental characteristics of any catalyst, namely
selectivity, turnover rates, and catalyst stability, can be assessed,
and improved, by subjecting evolvable systems to proper screen-
ing conditions. Pinpointing some essential structural features
eliciting such characteristics has provided guidelines for the further
development of more efficient and robust catalytic species. (1)
The most striking feature is the aforementioned sensitivity of the
Ratalysts to the carboxyl group arrangement around the metal
center. (2) The presence of free amines compromises oxidative
stability of the ligands. (3) We found that Schiff base ligands did
not provide any improvement over the free amino-group-
containing ligands. (4) Any perturbation of the best systéms
and9 led to a decrease of the catalytic performance.
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